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Abstract. Berry discovered that an eigenstate undergoing an adiabatic evolution in the 
parameter space will acquire a topological phase. Aharonov and Anandan, on the other 
hand, showed that an eigenstate transporting round a closed circuit in the projective Hilbert 
space suffices to generate the topological phase. In this paper we shall employ the evolution 
operator method to study the propagation of an eigenstate. We show that Berry’s phase 
can be represented as a closed path integral in the Hilbert space and is independent of 
the choice for the base { l n ( t ) ) } .  The treatments of Berry, and Aharonov and Anandan, are 
shown to correspond to two different choices of the base. Therefore their two approaches 
are unified; we have acquired a more general viewpoint on the origin of Berry’s phase. 

1. Introduction 

In 1984, Berry (1984a) discovered that any quantal system in an eigenstate transported 
adiabatically round a closed cycle, will acquire, apart from the usual dynamical phase, 
a toplogical phase known as the Berry phase. The toplogical nature of this Berry phase 
is elucidated by Simon (1983) (see also Niemi and Semenoff 1985) who showed that 
this phase is precisely the holonomy in a Hermitian line bundle. After these discoveries, 
a great deal of theoretical and experimental investigations have been performed. 
Applications have been made to different contexts of physics such as the fractional 
statistics of vortices in two dimensions (Haldane and Wu 1985), quantum Hall effect 
(Simon 1983, Arovas et a1 1984, Semenoff and Sodano 1986) and Born-Oppenheimer 
approximation (Stone 1986, Moody et a1 1986, Jackiw 1986, Martinez 1988). A classical 
analogue (Hannay angle) and semiclassical generalisation of Berry’s phase has also 
been accomplished (Berry 1984b, 1985, Hannay 1985, Cina 1986, Gozzi and Thacker 
1987a, b, Kugler and Shtrikman 1988, Ghosh and Dutta-Roy 1988, Anadan 1988). 
Besides, the gauge structure inherent in some simple quantal system is revealed (Wilczek 
and Zee 1984, Niemi and Semenoff 1985, Moody et a1 1986, Jackiw 1986, Li 1987). 

Apart from the above theoretical applications, experimental verification of Berry’s 
phase has also been made to both a boson system (Chiao and Wu 1986, Tomita and 
Chiao 1986, Chaio et a1 1988, Suter et a1 1988) and a fermion system (Bitter and 
Dubbers 1987). 

Theoretical generalisation of Berry’s discoveries has been pursued in several direc- 
tions. Wilczek and Zee (1984) allowed the eigenstate of the dynamical system to be 
degenerate and obtain non-Abelian gauge fields. Anandan and Stodolsky (1987) 
developed the group-theoretical method in studying Berry’s phase. Aharnonov and 
Anandan (1987) removed the adiabatic assumption of Berry and considered Berry’s 
phase to arise from the dynamical evolution of the quantal system round a closed 
circuit in the projective Hilbert space. Berry also relaxed the adiabatic assumption 
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and took into account the finite rate at which a quantal system is evolving (Berry 1987). 
Garrison and Chiao (1988) extended the notion of Berry's phase to non-linear systems. 
More recently Anandan (1988) developed Aharonov and Anandan's work by using 
the group-theoretical method. 

In the above theoretical investigations, two approaches are usually employed. One 
is based on the adiabatic assumption of Berry (1984a). In this approach, the toplogical 
phase can be expressed as a line integral in a parameter space. Eigenstates in this 
parameter space are also assumed to be single-valued. The other approach is due to 
Aharonov and Anandan (1987). The toplogical phase is now considered to result from 
the cyclic evolution of the quantal system itself. Superficially it seems that these two 
approaches come from entirely different origins. It is the purpose of this investigation 
to show that these two approaches are indeed two different manifestations of a more 
general scheme of approach. In this way we acquire a more general viewpoint on the 
origin of the toplogical phase in a quantal system. 

In § 2, we shall give a quantum mechanical derivation of the Berry phase in a 
quantum system by means of the evolution operator method. In 9 3, our result will 
be compared with those of Berry (1984a) and Anandan (1988). Section 4 concludes 
this paper. 

2. Toplogical phase in a quantal system 

We consider a quantal system described by a Hamiltonian H. This Hamiltonian can 
either be time dependent or time independent. Furthermore it is not necessarily cyclic 
in some parameter which induces the time evolution of the quantal system. Thus we 
allow a general scope of Hamiltonians to be considered here. The time development 
of the quantal system is governed by the evolution equation 

(2.1) 
d 

d t  
ih - I@( t ) )  = HI@( t ) ) .  

Introducing an evolution operator as usual by 

I W t ) )  = U ( t ,  O)l@(O)) 

U(0,O) = I 

U+(f,O)HU(t,O)-ihU+(t,O)ii(t,O)~0. 

with initial condition 

the evolution equation (2.1) will become 

(2.4) 
We would like to stress that the evolution operator is uniquely determined by the 
evolution equation (2.4), together with the initial condition (2.3). To proceed further, 
we first specify a base which is chosen to be the complete, orthonormal eigenstates of 
the Hamiltonian at time t = O  ( In (0 ) ) )  

where E,, is the instantaneous eigenvalue pertaining to the eigenstate In(0)). Now we 
split the evolution operator into two unitary operators: 

The explicit form for U ( t ) ,  and hence R ( t ) ,  is not specified yet. It should be noticed 
that there are infinitely many combinations of choices for U( t )  and R( t )  which, when 

ff(O)ln(O))= Enln(0)) (2.5) 

U (  t, 0) = U( t ) R (  t ) .  (2.6) 
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multiplied together, will produce the unique evolution operator U (  t, 0). Inserting (2.6) 
into the identity (2.4), we obtain the following relation: 

The dot appearing above R ( t )  denotes a time derivative. We denote the right-hand 
side of the above identity as % ( t ) :  

%( t )  = ihdB( t ) ~ + (  t ) .  (2.8) 

Coming back to the evolution equation (2.1), we perform a unitary transformation 
X(  t )  here is evidently Hermitian. 

to the wavefunction as follows: 

I@(t)? = rLJ(t)IWt))* (2.9) 

This is essentially a change of representation from I@(  t ) )  to I?!( t ) )  so that the evolution 
of the quantal system in the new representation is governed by the following evolution 
equation: 

d 

d t  
%( t)i?!( t ) )  = ih  - lq( t ) ) .  (2.10) 

This evolution equation shares the same form as the original evolution equation in 
(2.1). However this equation can readily be solved if we make a proper choice for the 
unitary operator R( t ) .  This is done by employing the following criterion: X (  t )  in (2.8) 
is required to be diagonal in the base ( i n ( 0 ) ) ) .  In this way, we are seeking a representa- 
tion in which the associated evolution equation can be solved easily. The above 
requirement can be achieved if and only if R( t )  is diagonal in the base ( In (0 ) ) ) .  Then 
the unitarity condition for R( t )  implies that R( f )  is given by 

[ R ( f ) l m , n  = a m , ,  e x ~ ( - i a n ( t ) )  (2.11) 

6,(0)  = 0. (2.12) 

for some s,(t) satisfying the initial condition 

Here we denote [RI,,, as the matrix element of R in the base (I(0))). From the 
specification made in (2.11) and (2.12), the form of the operator % ( t )  is expressible as 

[ X ( t ) l m , n  = am,nhan(t). (2.13) 

Now that %( t )  is diagonal, the evolution equation (2.10) can easily be solved to give 

(2.14) 

In the original representation I@(  t ) ) ,  the solution to the evolution equation in (2.1) 
will then be given by 

I @ ( t ) ) = U ( t )  exp -- % ( u ) d u  l@(O)),  ( 1 I: ) (2.15) 

This is the general expression for the wavefunction describing the evolution of the 
quantal system. Now suppose we start with an eigenstate of H at time t = 0: 

I@(())) = In(0)). (2.16) 
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Then by (2.13) and (2.15), we obtain 

I@(t)) = exp(-isn(t))U(t)ln(o)). 

In view of (2.7), (2.11) and (2.12), sn(t) is expressible as 

(2.17) 

(n(O)lU'(u)HU(u)ln(O)) du - i  (n(O) lu ' (u)~(u) in(O))  du 

=f I,' (@(u) lHl@(u))  du -i  (n(O)ju'(u)oj(u)ln(O)) du. (2.18) 

Substituting (2.18) back into (2.17), the wavefunction can be rewritten in the following 
form: 

l@(t)) = exp(iy,(t)) exP(iyB(t))ln( t ) )  (2.19) 

in which yD(t) is the usual dynamical phase: 

(2.20) 

while yB(t)  is the non-dynamical phase having a similar expression as that obtained 
by Berry (1984a): 

(2.21) 

where we have denoted 

I n ( t ) )  = U(t) ln(O)) .  (2.22) 

Equation (2.19) describes the evolution of an eigenstate In(0)). It is similar to the 
expression given by Berry (1984a). However, in obtaining his expression, Berry has 
assumed the evolution of the quantal system to be adiabatic so that In ( t ) )  represents 
an instantaneous eigenstate of the Hamiltonian H, while in our case, ln( t ) )  need not 
necessarily be an instantaneous eigenstate and in this way, no adiabatic assumption 
is required. 

We would like to stress that the simple expression for the wavefunction in (2.19) 
is the result of the particular choice of representation specified by (2.9) and (2.11). 
However the uniqueness of representation of the evolution operator U (  t ,  0) and (2.6) 
ensures that the wavefunction in (2.19) is independent of the choice of representation 
(namely the choice of U( t )  and R( t ) ) .  In other words, if we started with another U'( t )  
(and correspondingly another R'( t ) ) ,  the wavefunction thus obtained can, in principle, 
be reduced to the expression given by (2.19). It should be noticed that the specification 
made in (2.11) and (2.12) does not induce a unique representation for LJ(t). In fact, 
there is still an infinite number of choices of U ( t )  and R ( t )  satisfying the above 
specification. For instance, if we start with another u ( t ) ,  different from U ( t ) ,  so that 
the corresponding operator E(?)  is given by 

(2.23) [ R ( t ) I m , n  = [u+( t )  U(? ,  O ) I m , n  = 8 m , n  exp(-i6,(t)) 

with 
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and 

&(O) = 0 (2.25) 

then U( t )  can be related to U( t )  by a unitary transformation: 

O ( t ) = ~ ( t ) % ( t )  (2.26) 

in which %( t )  is represented by 

[ % ( t ) l m , n  = 8 m . n  e x ~ ( i + n ( t ) )  (2.27) 

with 

+ f l ( f )  = & ( t )  - & ( f ) .  (2.28) 

The wavefunction in the new representation (u( t ) ,  R ( t ) ) ,  will then be given by 

I6(t)) = exp(iyD( t ) )  eXP(iYB( t))l A( 1) (2.29) 

where 
1 rr 

(2.30) 

(2.31) 

(2.32) 

We have placed a bar over each symbol to indicate that u ( t )  is used instead of U ( t ) .  

A m , n  = i(m(o)Ier+(t)oj(t)In(o)> (2.33) 

Employing the notation? 

the phase factor y B ( t )  appearing in (2.31) then becomes 

Y B ( f )  = & ~ , n ( ~ )  due (2.34) 

Using (2.26) and (2.27), it can be easily seen that, under the change of representation 
from U( t )  to U( t ) ,  we have the following transformations: 

(2.35) 

lor 
In ( t ) )  + I f f (  t ) )  = exP(i4n(t))ln(t))  

A m , n (  t )  + A m , n  ( t )  = exp[i( 4 n  ( t )  - 4 m  ( f ) ) I [ A m , n (  t )  - C n  ( t ) S m , n  I (2.36) 

Y B ( ? ) +  ? B ( f ) =  ? B ( t ) - + n ( t ) *  (2.37) 

Resetting all these results into (2.29), we arrive at 

l W t ) ) = e x ~ ( i y D ( t ) )  exp{i[yB(t)- + , ( t ) I }  exp(i+,(t))In(t)) 

= I@([)). (2.38) 

Thus the wavefunction can be expressed equivalently by different representation of 
U ( t )  within the specification given by (2.11) and (2.12). 

t A,,,,, plays the role of a gauge potential here. 
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Now we investigate the evolution of the above wavefunction when it undergoes a 
cyclic evolution. In other words, we study the evolution of the wavefunction while 
the quantal system transports round a circuit in the projective Hilbert space, as 
Aharonov and Anandan (1987) have considered. The above condition can be represen- 
ted by 

I W 7 ) )  = exp(iy)lWO)) (2.39) 

for some real y and 7: Here T denotes the time whence the quantal system returns to 
its initial state in the projective Hilbert space, and y is the total phase change resulting 
from such an evolution. Now, in view of (2.19), we must have 

ln(7)) = e x p b  ) I  n(O))  (2.40) 

for some real cy. It should be noticed that the value of a depends on the choice of 
u( t ) .  In fact, the quantity exp(icy) is just the eigenvalue of the operator U(?-) with 
respect to the eigenstate In(0)). Substituting (2.40) back into (2.29), the wavefunction 
at time t = T will become 

I@(.)) = exp( iydT) )  exp(iyd7))ln(o)) (2.41) 

where 

= yB(7) + cy* (2.42) 

So in view of (2.39), the total phase change y will be composed of two parts: 

y =  y D ( T ) + Y T ( T ) .  (2.43) 

The first part yD( T )  is the usual dynamical phase, while the other part, yT( T ) ,  is the 
topological phase. Due to the fact that the wavefunction is independent of the choice 
of UJ(t), the topological phase ~ T ( T )  should also be independent of the choice of UJ(t). 
In fact, it can be easily seen that, with the change of representation from U( t )  to U( t )  
in (2.26), ~ ~ ( 7 )  and a transform in the following way: 

Y B ( T ) +  Y B ( 7 ) =  Y B ( T ) - $ ~ ( T )  (2.44) 

Cy + & = a+$,,(.). (2.45) 

Therefore any change in'the phase ~ B ( T )  due to the change in the representation of 
UJ(t) is compensated by a corresponding change in a. 

3. Specific choice of representation 

We should note that expression (2.41) represents our general result that an eigenstate, 
once transported round a closed circuit in the projective Hilbert space, will acquire a 
topological phase, apart from the usual dynamical phase. These two phases are 
independent of any particular choice of U ( t ) .  In obtaining these results, we notice 
that no adiabatic assumption is needed. Besides, the Hamiltonian need not necessarily 
be time dependent. Furthermore, no underlying parameter space is required to describe 
the cyclic evolution of the wavefunction. The existence of the toplogical phase merely 
reflects the geometric property of the physical motion of the quantal system itself. 
Therefore it becomes possible to associate the toplogical phase with non-trivial cyclic 
evolution of an isolated system, as pointed out by Anandan (1988). 
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In the following, we shall make two particular choices of U( t ) ,  and hence R( t ) ,  by 
which the result made by Berry (1984a) and Anandan (1988) can be regenerated. 

( a )  Firstly, in view of (2.40) and (2.45), the phase angle a can always be transformed 
away by a particular (but not unique, of course) choice for U( t )  and R( t )  so that we 
have 

CY = O  (3 .1 )  

ln(7))= U(.r)ln(O)) = In@)). (3.2) 

and hence 

Then from (2.21) and (2.42), the toplogical phase will be given by 
P r  

Denoting 

8 =U(t)ln(O)) (3.4) 

as a state vector in the Hilbert space, (3.2) then implies that this state vector 8 will 
describe a closed cycle in the Hilbert space while the quantal system is transported 
round a closed circuit in the projective Hilbert space. The topological phase in (3.3) 
can thus be written as a closed path integral in the Hilbert space: 

with C denoting the trajectory of the state vector 4p in the Hilbert space. Now if we 
consider that the evolution of the state vector is induced by a change of parameter 
R in a parameter space, then we can represent 4p as a function of R: 

8 ~ 8 ( R ) ~ I n ( t ) ) ~ I n ( R ) ) .  (3.6) 
Equation (3.2) thus implies that the state vector v(R) is single valued and is going 
round a closed cycle in the parameter space. This condition is precisely what Berry 
(1984) required in his derivation. In the parameter space, the topological phase can 
be written as a closed path integral: 

' Y T ( ~ )  = i  fC n(R)IV,n(R)) ' d R  (3.7) 

in which is a closed circuit generated by the state vector In(R)) in the parameter 
space. If we now employ the adiabatic assumption that the wavefunction I@( t ) )  is an 
instantaneous eigenstate of the Hamiltonian H at any time, then in view of (2.2), the 
evolution operator U (  t, 0) will satisfy the following relation: 

H U ( t ,  O)In(O)) = En(r)U(t, O)In(O)). (3.8) 

The evolution operator U (  f ,  0) here is expressible as product of two unitary operators 
U ( t )  and R(f )  specified by conditions (3 .1)  and (3.2). Since R ( t )  is diagonal in the 
base {In(O))}, then from (3.8) we see that U ( t )  will also satisfy the relation (in addition 
to condition (3.1)) 

HU ( f ) I n (0)) = En ( t )U ( t )  I n (0)). (3.9) 
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Therefore the state vector In( t ) )  = U(t) ln(O))  is again an instantaneous eigenstate of 
the Hamiltonian H,  and the result represented in (3.7) is exactly the result obtained 
by Berry. Now, as pointed out in his work, the integral (3.7) is independent of the 
choice of base of the eigenstates {In(t))} (i.e. the choice of U ( t ) ) .  This is, of course, 
an elucidation of the fact that the wavefunction I @ ( t ) )  is independent of the choice 
of U( t ) .  

( b )  Now let us consider another choice of U ( t )  given by 

(3.10) 

This choice of U( t )  has been employed by a number of authors (Anandan and Stodolsky 
1987, Berry 1987, Anandan 1988) and it implies that the state vector U( t ) jn(O))  is 
parallel-transported along a closed circuit in the projective Hilbert space. Now in view 
of expression (3.10), ~ ~ ( 7 )  will be identically zero. From (2.42), the toplogical phase 
is then simply given by 

(3.11) 

with a satisfying the eigenequation 

n ( 0 ) )  = exp(ia)ln(o)). (3.12) 

This is precisely the result obtained by Anandan (1988). As (3.12) stands, a is not 
represented by a closed form expression. However, the topological phase ~ ~ ( 7 )  is 
independent of the choice of U(t). Therefore the topological phase a appearing in 
(3.11) and (3.12) should be identical with the expression shown in (3.5). In this way, 
we need not necessarily solve the eigenequation (3.12) to obtain a. Instead, (3.5) (or 
equivalently (3.6)) provides another expression for finding a, the Berry phase. 

4. Conclusion 

Starting from the evolution equation, we have derived the wavefunction describing the 
evolution of an eigenstate (2.19), which is shown to be independent of the choice of 
U ( t ) .  If we consider a quantal system undergoing a cyclic evolution (2.39), as con- 
sidered by Aharonov and Anandan (1987), the eigenstate will acquire a toplogical 
phase as well as the usual dynamical phase. These two phases are independent of the 
choice of U(?). In our derivation, no adiabatic assumption is required; besides, the 
Hamiltonian describing the quantal system need not necessarily be time dependent. 
Therefore our result is valid for any non-adiabatic evolution of an eigenstate. Equation 
(3.5) gives a general expression for the toplogical phase. Under condition (3.2), this 
phase becomes the non-adiabatic analogue of Berry’s result. 

We have used the evolution operator method to derive Berry’s phase as indicated 
by (3.5). Under conditions (3.1) and (3.10), (3.5) respectively translates to Berry’s and 
Anandan’s results, which are obtained from different approaches. Such a consequence 
is just an elucidation of the independence of Berry’s phase on the choice of U ( t ) .  

Finally we would like to stress that the topological phase is only a manifestation 
of the physical motion of a quantal system under a cyclic evolution. Any evolution 
of an eigenstate, whether adiabatic or not, when transported round the same closed 
circuit in the projective Hilbert space, will give rise to the same toplogical phase. 
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